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Abstract
Quasiparticle relaxation and non-local effects on the surface impedance Zs

of pure metals are analysed for arbitrary relaxation times τ and mean free
paths l. The analysis predicts a non-monotonic variation of the differential
loss tangent (∂Rs/∂τ)/(∂Xs/∂τ) in the normal state, which distinguishes it
from the classical limits. In the superconducting state, Zs can be described
by a two-fluid model incorporating a Drude-type conductivity and an effective
relaxation time τe. The τ -values derived from theory and data measured on
Sr2RuO4-crystals using a hollow dielectric resonator technique at 10 GHz are
consistent, and in accordance with DC resistivity data.

Studying the electrodynamic response of the metallic copper-free layered perovskite Sr2RuO4

[1,2] at microwave frequencies ω = 2πf , provides information on the electronic properties
within a surface layer of the order of the reduced plasma wavelength ∼200 nm, and on
a time scale of the order of 1/ω. Such measurements are therefore complementary to
thermodynamic measurements of bulk properties and low-frequency transport measurements,
which are insensitive to quasiparticle scattering. Investigating the surface impedance Zs of
Sr2RuO4 is of special interest because of its very high purity [2], which enhances relaxation
and non-local effects at microwave frequencies. There is also increasing evidence that the
superconducting order parameter of this spin-triplet superconductor has a p-wave symmetry
[3–5].

In the normal state of Sr2RuO4, the long quasiparticle relaxation time τ renders the
microwave response intermediate between the local and non-local limits leading to the normal
and extreme anomalous skin effects [6]. The limiting regimes are determined by the ratios of
the classical skin depth δ = (2ρ/µ0ω)

1/2 to either the quasiparticle mean free path l = vF τ

or the path Lω = vF τω travelled in the time τω = 1/ω(vF is the Fermi velocity, µ0 the
vacuum permeability, and ρ the DC resistivity, with typical values for high-purity crystals of
around 0.2 µ� cm at Tc [7]). At a typical microwave frequency f = 10 GHz, δ ≈ 225 nm is
only about one third of the in-plane mean free path l ∼ 700 nm of high-purity Sr2RuO4 [7].
While the low-frequency condition for the normal skin effect limit, l � δ(ω) [6], is violated,
a local electrodynamic response might be restored at high frequencies if Lω � δ/(ωτ)1/2

[6]. However, with vF∼8×104 m s−1 typical for Sr2RuO4 [8], we obtain Lω ≈ 1200 nm and
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δ/(ωτ)1/2 ≈ 400 nm at 10 GHz. Hence, neither the normal nor the extreme anomalous skin
effects are appropriate to describe the surface impedance of Sr2RuO4 in the normal state.

Recent microwave measurements in the superconducting state of high-purity Sr2RuO4

crystals have revealed an unusual non-monotonic temperature dependence of the effective
microwave penetration depth below Tc (see figure 4(a), inset to figure 5 and [9]). This
effect results from the similarity in magnitude of δ and the reduced plasma wavelength
�p = λp/2π = (m∗/µ0n0e

2)1/2∼150 nm, which causes comparably large contributions
to the shielding of microwave fields by quasiparticles and Cooper pairs near Tc (n0 is the
effective quasiparticle density and m∗ their effective mass). The Zs-data can be described by a
two-fluid model with a Drude-like quasiparticle conductivity and an effective relaxation time
τe∼1/ω, allowing us to derive an extrapolated finite fraction of unpaired charge carriers at
zero temperature and a quadratic temperature dependence of λL [9]. The basic features of this
model are sketched in the second part of this paper.

To model the normal state surface impedance of Sr2RuO4 properly, we have extended the
theory of Reuter and Sondheimer (RS) [6] to arbitrary values of the dimensionless scattering
time ωτ and non-locality parameter β ≡ 0.75(Lω/�p)

2; �p represents the shortest length
scale for the penetration of magnetic fields into a clean metal. The RS analysis assumes
an isotropic Fermi surface and scattering time, a quadratic quasiparticle dispersion relation,
and specular or completely diffuse reflection at the surface (see also [10]). For simplicity,
we focus on specular reflection, which reveals the essential features of the problem. The
assumption of an isotropic Fermi surface does not apply to Sr2RuO4, where it consists of three
almost cylindrical sheets [11]. However, for our measurements with the microwave magnetic
field parallel to the c-axis of the crystal and the induced currents both flowing and decaying
parallel to the RuO2 planes, the difference between a cylindrical and a spherical Fermi surface
introduces only minor corrections.

To calculate the surface impedance Zs , RS derived a general relation between current
density and electric field for arbitrary values of l [6]. We combine their equations (21), (40)
and (41) and express Zs entirely in terms of ωτ , by replacing l by vF τ :

Zs = Rs + iXs = 2i

π
µ0vF

ωτ

1 + iωτ

∞∫
0

dq ′

q ′2 + iβκ(q ′) [ωτ/ (1 + iωτ)]3 . (1)

The electromagnetic response is local if the material-specific frequency dependent
parameter β is much smaller than βc ≡ [1 + 1/(ωτ)2]3/2 [6,12], as illustrated in figure 1(a).
This generalises the limits l � δ and xω � δ/(ωτ)1/2 at low and high frequencies.

The function κ(q ′) = 2[(1 + q ′2)tan−1(q ′) − q ′]/q ′3 in equation (1) is plotted in
figure 1(b). It is related to the wave-number dependent transverse conductivity [13,14] by
σ(q)/σ0 = 0.75κ(q ′)/(1 + iωτ), where q ′ = ql/(1 + iωτ) and σ0 is the DC conductivity.
Relaxation and non-local effects on Zs are related to the functional dependence of κ on q ′

[15]. The normal limit is obtained by replacing κ(q ′) by its asymptotic value κ0 = 4/3 as
q ′→0, yielding:

Zs,0

µ0ω�p

=
[

1 +
1

(ωτ)2

]1/4 {
sin

[
tan−1(1/ωτ)

2

]
+ i cos

[
tan−1(1/ωτ)

2

]}
. (2)

Equation (2) is the local-limit result Zs,0 = (1 + iωτ)1/2(iωµ0/σ0)
1/2 for a Drude-type

quasiparticle conductivity σ0/(1 + iωτ) [9], which reduces to the classical skin effect result
Zs,class = µ0ω�(2/ωτ)1/2(1 + i) for ωτ � 1. Similarly, the extreme anomalous limit is
obtained from equation (1) by replacingκ(q ′) by its asymptotic valueκ∞(q ′) = π/q ′ asq ′→∞.
The resulting surface impedance is Zs,∞ = γµ0ω�pβ

1/6(1 + i√3) with γ−1 = 9(8π)1/3/8.
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Figure 1. (a) Critical non-locality parameter β versus ωτ, separating local and non-local response
as indicated. (b) Illustration of κ(q ′) (solid curve) and its asymptotic behaviour 4/3 (dotted) and
π/q ′ (dashed line).

The results for the local and extreme anomalous limits are displayed in figure 2 as the
normalized surface resistance Rs/Rs,∞ (curves 1a and 2a) and surface reactance Xs/Rs,∞ (1b
and 2b) versus ωτ . We note that Rs,0 decreases below Rs,∞ like 1/ωτ in the limit of large ωτ ,
while Xs,0/Rs,∞ approaches a β-dependent value independent of ωτ . According to equation
(2), the ratio Rs,0/Xs,0 is given by tan[tan−1(1/ωτ)/2] = [1 + (ωτ)2]1/2−ωτ .

Figure 2. ωτ -dependence of Rs/Rs,∞ and Xs/Rs,∞ for the normal limit (curves 1a and 1b) and
the extreme anomalous limit (2a and 2b). The analytical approximation to equation (1) described
in the text is illustrated for the intermediate case β = 10 (3a and 3b). All curves were evaluated
for vF = 8×104 m s−1 and f = 10 GHz.

RS discussed the analytical solution of equation (1) only for the above approximations of
κ for the two limits which, however, are justified only for small (q ′ < 0.1) and large (q ′ � 30)
arguments (figure 1(b)). We obtain a more accurate analytical approximation of Zs(ωτ) by
separating the integral (equation (1)) into two sections defined by the limiting forms of κ(q ′)
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at low and high q ′-values intersecting at q ′ = 3π/4. A typical result is illustrated in figure 2
for β = 10 (curves 3a and 3b). The deviation from the local limit at small ωτ -values is an
artefact of the chosen normalization (see figure 3 below). Significant non-local corrections
to the ωτ -dependence expected from equation (2) occur for this β-value at moderate values
ωτ ∼ 0.5. While Xs approaches the extreme anomalous limit at large ωτ,Rs approaches a
β-dependent level well below Rs,∞. Rs and Xs approach the extreme anomalous limit ratio
Xs/Rs = √

3 over an increasing range of ωτ -values for large values of β.

Figure 3. (a) ωτ -dependence of Rs/Rs,0 (left ordinate) and Xs/Rs,0 (right ordinate), resulting
from the numerical solution of equation (1) for β = 0.1 (solid curve), 1 (coarse-dashed), 10
(fine-dashed), and 100 (dotted). (b) Differential loss tangent η(ωτ) = (∂Rs/∂τ)/(∂Xs/∂τ) for
β = 0.1, 1, 10, and 100 (1–4). All curves in both panels were evaluated for vF = 8×104 m s−1

and f = 10 GHz.

The above analytical but still approximate solution reveals the qualitative features of Zs

in the intermediate range of ωτ and β-values. An exact solution of equation (1) requires
numerical integration involving no approximations to κ(q ′) [10]. Figure 3(a) shows computed
Rs and Xs values, normalized to the values Rs,0 and Xs,0 in the pure relaxation limit (equation
(2)), for β = 0.1 (solid), 1.0 (coarse dashed), 10 (fine dashed), and 100 (dotted). Non-local
corrections to Zs become important for ωτ -values which decrease with increasing β, as shown
in figure 1(a).

The influence of non-locality on Zs is illustrated further by the differential loss tangent
η ≡ (∂Rs/∂τ)/(∂Xs/∂τ) in figure 3(b). This quantity, which can be directly derived from
measured data without absolute calibration, can be used to determine ωτ for a given β-value.
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In the local limit, the slope η0 = {[1 + (ωτ)2]1/2−ωτ }−1 increases continuously, consistent
with equation (2). In contrast, our numerical results for β = 0.1, 1, 10, and 100 (curves 1
to 4) show a peak developing in η for ωτ -values which decrease with increasing β (around
ωτ ∼ 0.1–1 for β = 10–100, appropriate for Sr2RuO4 at 10 GHz). The position and the exact
shape of the peak depend on the band structure of the metal through the parameters λp and
vF . The maximum of the differential loss tangent provides therefore a sensitive method to
correlate microwave measurements of the normal state in high-purity metals with their Fermi
surface properties.

Our theoretical results can be compared with experimental data on Zs(T ) of high-purity
Sr2RuO4 crystals measured at 10 GHz using a hollow dielectric resonator technique [16].
Normal state measurements were extended to temperatures T ∼ 0.4 K by application of a
DC magnetic field perpendicular to the RuO2 planes. Figure 4(a) displays the essential results
for the resonator bandwidth, �fB,tot(T ), associated with the microwave losses (left ordinate)
and for the change of the resonant frequency, −2�f0(T ), associated with the change of the
penetration depth in the Sr2RuO4 crystal (right ordinate) with and without magnetic field (filled
and open symbols). More details of our experimental results are being published separately
[9]. Figure 4(b) shows the slope η(T ) = −[∂(�fB,tot)/∂T ]/[∂(2�f0)/∂T ] directly derived
from these data. Above about 8 K, η(T ) approaches unity as expected in the normal skin effect
limit, i.e. ωτ < 0.1. However, with decreasing temperature the slope increases but tends to
saturate below 1 K, reflecting the increase of τ(T ) towards a constant value limited by elastic
impurity scattering. The derived value η ∼ 1.7 is close to the maximum expected for Sr2RuO4

at 10 GHz (β ∼10–100) and occurs when ωτ ∼0.5–1, confirming that we are in neither the
normal nor extreme anomalous skin effect limits.

Figure 4. (a) Temperature dependence of the microwave impedance of a Sr2RuO4 crystal at
10 GHz (left ordinate: microwave losses, right ordinate: change of resonant frequency) in static
magnetic field B = 0 mT (open) and B = 63 mT (filled symbols) [9]. (b) Differential loss tangent
η(T ) = (∂Rs/∂T )/(∂Xs/∂T ) deduced from the experimental data in panel (a).

Relaxation and non-locality have also to be considered in the superconducting state.
However, since Sr2RuO4 is a type-II superconductor [8], the electrodynamic response of the
Cooper pairs is essentially local. The non-locality and relaxation of the quasiparticle response
can be approximated by a Drude-type quasiparticle conductivity replacing τ by an effective
relaxation time τe. Expansion of κ(q ′)∼4/3×(1−q ′2/5) in equation (1) and comparison with
equation (2) reveals that τe/τ = 1 + 4/15×(l/�p)

2 for β < βc. (The two-fluid model with
a local pair response and a non-local quasiparticle response will be analysed in greater detail
in a separate paper.) Our assumptions lead to Zs = (iµ0ω/σ)

1/2; the complex conductivity σ
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is determined by the fractions xN(T ) and xS(T ) = 1−xN(T ) of unpaired and paired charge
carriers, µ0ω�

2
pσ = xNϕe/(1 + iϕe)−ixS , where ϕe ≡ ωτe. The result for Zs , normalised to

Rs(xN = 1), is

Zs

Rn

= x
−1/2
N

[
1 + ϕ2

e

1 + ε2

]1/4
sin[tan−1(ε−1)/2] + i cos[tan−1(ε−1)/2]

sin[tan−1(ϕ−1
e )/2]

(3)

with ε = ϕe + xS/xN×(ϕe + ϕ−1
e ). The modelled surface reactance Xs indeed passes through

a maximum at xN < 1, i.e. T < Tc, in accordance with our experimental data in figure 4(a).
The maximum of Xs/Rn occurs at a value ε = ε0(ϕe) given by the positive root of the equation
(ε0 + ϕe−1)2−(1 + ε2

0)
1/2(ε0 + ϕ−1

e )−ϕ−2
e = 1. We note that the total increase of the reactance

above its normal state value, ξmax = [Xs,max − Xs(1)]/Rn, depends only on ϕe:

ξmax = 1

tan[tan−1(ε−1
0 )/2]

×
[

(1 + ε0ϕe)
2

(1 + ϕ2
e )(1 + ε2

0)

]1/4

− 1

tan[tan−1(ϕ−1
e )/2]

. (4)

Equation (4) is plotted in the main body of figure 5. Our model can be easily compared with the
experimental data if we plot the surface reactance (figure 4(a)) against the surface resistance,
both normalized to Rs(Tc) (see inset to figure 5). The implicit variable in this parametric plot
is, in the experiment, the temperature T , while it is xN in the two-fluid model. The parameter
ξmax can be obtained from a comparison between data and model without knowing absolute
values of Zs as indicated, therefore allowing an unambiguous determination of ϕe. The inset
to figure 5 shows that the surface impedance of Sr2RuO4 measured at 10 GHz can be described
very well throughout the superconducting state with a constant value ϕe = 0.78. This value
is consistent with ωτ ∼ 0.5 derived from the normal state microwave measurements and a
typical DC resistivity ρ(Tc) = µ0�

2
pτ ∼ 0.2µ� cm [7].

Figure 5. ϕe-dependence of ξmax (dots: evaluation of equation (4) at selected values of ϕe ,
solid curve: interpolation). Inset: parametric plot of Zs/Rn, with �Xs(xN ) = Xs(xN )−Xs(1),
according to equation (3) for ϕe = 0.1, 0.5, 0.78, 1.0, 5.0,∞ (1–6). The definition of ξmax is
indicated for curve 1. The symbols represent data on a Sr2RuO4 crystal at 10 GHz [9].
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Once the effective scattering time τe is known, equation (3) can be used to derive the
normal fraction xN(T ) from the measured Zs(T ) data. As discussed in more detail in [9], we
find xN(T ) extrapolating almost linearly to a finite value at zero temperature.

In summary, we have studied the effect of quasiparticle relaxation and non-locality on the
surface impedance of the high-purity superconducting metal Sr2RuO4. We have analysed
the Reuter and Sondheimer theory for arbitrary values of ωτ and non-locality parameter
β∼(l/λp×1/ωτ)2. We compare the solutions for Zs with the local description and find
good agreement up to β-values close to the critical value βc(ωτ). We predict a peak in the
differential loss tangent ∂Rs/∂Xs , which provides a sensitive method to correlate normal-state
microwave measurements of high-purity metals with their Fermi surface properties. In the
superconducting state, Zs can be described by a local two-fluid model, which enables us to
determine an effective scattering time τe below Tc. We find a temperature independent τe-value
throughout the superconducting state. The derived τ -values in the normal and superconducting
states are consistent and in good agreement with DC resistivity data.

We are grateful to A P Mackenzie, G Müller, K Scharnberg, R Schwab and A Sibley for
valuable discussions and to Y Maeno for providing us with the high-purity Sr2RuO4 crystals.
MAH thanks the EPSRC (UK) and the Land Nordrhein-Westfalen (Germany) for financial
support.
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